Scholten Forms and Elliptic/Hyperelliptic Curves with Weak Weil Restrictions

نویسندگان

  • Fumiyuki Momose
  • Jinhui Chao
چکیده

In this paper, we show explicitly the classes of elliptic and hyperelliptic curves of low genera dened over extension elds, which have weak coverings , i.e. their Weil restrictions can be attacked by either index calculus attacks to hyperelliptic curves or Diem's recent attack to non-hyperelliptic curves. In particular, we show how to construct such c o v erings from these curves and analyze density of the curves for them such construction is possible.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weil Restriction of an Elliptic Curve over a Quadratic Extension

Let K be a finite field of characteristic not equal to 2, and L a quadratic extension of K. For a large class of elliptic curves E defined over L we construct hyperelliptic curves over K of genus 2 whose jacobian is isogenous to the Weil restriction ResK(E).

متن کامل

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristic

In this paper, we present a classification of elliptic curves defined over a cubic extension of a finite field with odd characteristic which have coverings over the finite field therefore subjected to the GHS attack. The densities of these weak curves, with hyperelliptic and non-hyperelliptic coverings, are then analyzed respectively. In particular, we show, for elliptic curves defined by Legen...

متن کامل

Complete characterization of the Mordell-Weil group of some families of elliptic curves

 The Mordell-Weil theorem states that the group of rational points‎ ‎on an elliptic curve over the rational numbers is a finitely‎ ‎generated abelian group‎. ‎In our previous paper, H‎. ‎Daghigh‎, ‎and S‎. ‎Didari‎, On the elliptic curves of the form $ y^2=x^3-3px$‎, ‎‎Bull‎. ‎Iranian Math‎. ‎Soc‎.‎‎ 40 (2014)‎, no‎. ‎5‎, ‎1119--1133‎.‎, ‎using Selmer groups‎, ‎we have shown that for a prime $p...

متن کامل

Elliptic curves with weak coverings over cubic extensions of finite fields with odd characteristics

In this paper, we present a classification of classes of elliptic curves defined over cubic extension of finite fields with odd characteristics, which have coverings over the finite fields therefore can be attacked by the GHS attack. We then show the density of these weak curves with hyperelliptic and non-hyperelliptic coverings respectively. In particular, we shown for elliptic curves defined ...

متن کامل

Improved Weil and Tate Pairings for Elliptic and Hyperelliptic Curves

We present algorithms for computing the squared Weil and Tate pairings on elliptic curves and the squared Tate pairing on hyperelliptic curves. The squared pairings introduced in this paper have the advantage that our algorithms for evaluating them are deterministic and do not depend on a random choice of points. Our algorithm to evaluate the squared Weil pairing is about 20% more efficient tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2005  شماره 

صفحات  -

تاریخ انتشار 2005